Assimilation of xylem-transported 13C-labelled CO2 in leaves and branches of sycamore (Platanus occidentalis L.)

نویسندگان

  • M. A. McGuire
  • J. D. Marshall
  • R. O. Teskey
چکیده

Previous reports have shown that CO(2) dissolved in xylem sap in tree stems can move upward in the transpiration stream. To determine the fate of this dissolved CO(2), the internal transport of respired CO(2) at high concentration from the bole of the tree was simulated by allowing detached young branches of sycamore (Platanus occidentalis L.) to transpire water enriched with a known quantity of (13)CO(2) in sunlight. Simultaneously, leaf net photosynthesis and CO(2) efflux from woody tissue were measured. Branch and leaf tissues were subsequently analysed for (13)C content to determine the quantity of transported (13)CO(2) label that was fixed. Treatment branches assimilated an average of 35% (SE=2.4) of the (13)CO(2) label taken up in the treatment water. The majority was fixed in the woody tissue of the branches, with smaller amounts fixed in the leaves and petioles. Overall, the fixation of internally transported (13)CO(2) label by woody tissues averaged 6% of the assimilation of CO(2) from the atmosphere by the leaves. Woody tissue assimilation rates calculated from measurements of (13)C differed from rates calculated from measurements of CO(2) efflux in the lower branch but not in the upper branch. The results of this study showed unequivocally that CO(2) transported in xylem sap can be fixed in photosynthetic cells in the leaves and branches of sycamore trees and provided evidence that recycling of xylem-transported CO(2) may be an important means by which trees reduce the carbon cost of respiration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of different carbon sources to isoprene biosynthesis in poplar leaves.

This study was performed to test if alternative carbon sources besides recently photosynthetically fixed CO2 are used for isoprene formation in the leaves of young poplar (Populus x canescens) trees. In a 13CO2 atmosphere under steady state conditions, only about 75% of isoprene became 13C labeled within minutes. A considerable part of the unlabeled carbon may be derived from xylem transported ...

متن کامل

The effect of different sources of iron on improving the growth and condition of plantain leaf chlorosis (Platanus orientalis L) by trunk injection in urban landscape

To investigate trunk injection treatment effects on eliminating chlorosis disorder and improving the growth of plane trees (Platanus orientalis L.), an experiment was arranged in a factorial experiment based on a randomized complete block design at Lavark Reasrch Farm, Isfahan University of Technology, Isfahan, Iran, with three replications and four treatments. Treatments consisted of different...

متن کامل

Antibacterial Activities of Metabolites from Platanus occidentalis (American sycamore) against Fish Pathogenic Bacteria

One approach to the management of common fish diseases in aquaculture is the use of antibiotic-laden feed. However, there are public concerns about the use of antibiotics in agriculture and the potential development of antibiotic resistant bacteria. Therefore, the discovery of other environmentally safe natural compounds as alternatives to antibiotics would benefit the aquaculture industries. F...

متن کامل

Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism.

High concentrations of inorganic carbon in the xylem, produced from root, stem, and branch respiration, travel via the transpiration stream and eventually exit the plant through distant tissues as CO2. Unlike previous studies that focused on the efflux of CO2 from roots and woody tissues, we focus on efflux from leaves and the potential effect on leaf respiration measurements. We labeled transp...

متن کامل

Maturation of Sweetgum and American Sycamore Seeds

Over three consecutive years in central Mississippi, sweetgum (Liquidambar styraci/lua L.) and sycamore (Platanus occidentalis L.) fruits had nearly reached fullsize by late June. Sweetgum seeds were physiologically mature by mid-August, but dry weight increased until late September. As sweetgum seeds matured, the crude fat level rose to 27 percent of seed dry weight. During maturation, concent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2009